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1  | INTRODUC TION

Tropical forests are known for their high tree species diversity. 
Current estimates suggest in the order of 15,000 tree species 
in Amazonia alone, in contrast to 124 tree species in temperate 
forests in Europe, and more than 40,000 different tree species 
across the tropical region (Slik et al., 2015; Ter Steege et al., 2015). 
High levels of tree species richness may contribute to maximizing 
the provision of essential ecosystem services (Liang et al., 2016). 
Unfortunately, 35% of pre-agricultural global forest cover has been 
lost over the past 300 years, largely due to increasing human pres-
sures on the environment. Eighty-two percent of the remaining 
forest is estimated to have experienced some degree of human im-
pact (Watson et al., 2018). The Convention of Biological Diversity 
(CBD) and Group on Earth Observations Biodiversity Observation 
Network (GEO BON) have developed a list of important variables 

aiming to provide quantitative information on biodiversity to 
reach the Aichi biodiversity targets 2020 (Pereira et al., 2013; 
Skidmore et al., 2015). Among the identified needs is the mapping 
of taxonomic diversity at high spatial resolution over large scales 
(Pereira et al., 2010). Here, we focus on tree species diversity. The 
collection of tree species diversity data is traditionally done in 
the field, and such information has previously been used to cre-
ate predictive maps of tree species richness across the globe at 
low spatial resolution (Kier et al., 2005; Mutke & Barthlott, 2005). 
More recently, passive remote sensing data, such as optical imag-
ery from various airborne and spaceborne platforms, have been 
used in combination with field reference data to predict tree spe-
cies diversity in different regions (Bongalov et al., 2019; Carlson, 
Asner, Hughes, Ostertag, & Martin, 2007; Féret & Asner, 2014; 
Foody & Cutler, 2006; Rocchini et al., 2016; Schäfer, Heiskanen, 
Heikinheimo, & Pellikka, 2016). Even though such methods have 
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conservation and biodiversity management. In this study, we evaluated the potential 
of full-waveform lidar data for mapping tree species richness across the tropics by 
relating measurements of vertical canopy structure, as a proxy for the occupation of 
vertical niche space, to tree species richness.
Location: Tropics.
Time period: Present.
Major taxa studied: Trees.
Methods: First, we evaluated the characteristics of vertical canopy structure across 
15 study sites using (simulated) large-footprint full-waveform lidar data (22 m diame-
ter) and related these findings to in-situ tree species information. Then, we developed 
structure–richness models at the local (within 25–50 ha plots), regional (biogeo-
graphical regions) and pan-tropical scale at three spatial resolutions (1.0, 0.25 and 
0.0625 ha) using Poisson regression.
Results: The results showed a weak structure–richness relationship at the local 
scale. At the regional scale (within a biogeographical region) a stronger relationship 
between canopy structure and tree species richness across different tropical forest 
types was found, for example across Central Africa and in South America [R2 ranging 
from .44–.56, root mean squared difference as a percentage of the mean (RMSD%) 
ranging between 23–61%]. Modelling the relationship pan-tropically, across four con-
tinents, 39% of the variation in tree species richness could be explained with canopy 
structure alone (R2 = .39 and RMSD% = 43%, 0.25-ha resolution).
Main conclusions: Our results may serve as a basis for the future development of a set 
of structure–richness models to map high resolution tree species richness using verti-
cal canopy structure information from the Global Ecosystem Dynamics Investigation 
(GEDI). The value of this effort would be enhanced by access to a larger set of field 
reference data for all tropical regions. Future research could also support the use of 
GEDI data in frameworks using environmental and spectral information for modelling 
tree species richness across the tropics.
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been developing progressively over the last decade, they are not 
yet operational for mapping tree species richness across the trop-
ics due to, among others, a lack of consistent remote sensing and 
training data over such scales, insufficient model accuracy and/or 
low spatial resolution.

The scientific community has called for bolder science in con-
servation strategies to enable effective management of the Earth’s 
forests and allow for better conservation of our natural ecosys-
tems (Lewis, Edwards, & Galbraith, 2015; Watson et al., 2016). In 
this study, we focus on the use of active remote sensing, specifi-
cally lidar, for mapping taxonomic tree species richness in the trop-
ics. While local tropical forest diversity is largely independent of 
biomass in intact forests (Sullivan et al., 2017), it remains unclear if 
substantial amounts of variation in species diversity are associated 
with other features of forest structure. Here, we explore for the first 
time whether small-scale vertical canopy structure variation is sig-
nificantly associated with the spatial variation in tropical tree species 
richness. On a global scale it has previously been shown that can-
opy height explains a limited portion of the variation in tree species 
diversity, as such data provide information on the available niche 
space (Gatti, Di Paola, Bombelli, Noce, & Valentini, 2017). It has 
since been hypothesized that including information on the vertical 
canopy structure must explain more of the variation in tree species 
diversity than canopy height alone, as such data provide informa-
tion on the occupation of the vertical niche space. Marselis et al. 
(2019) demonstrated that information on canopy height and verti-
cal canopy structure, expressed as the plant area index (PAI) profile 
from full-waveform airborne lidar data, could be used to map tree 
species diversity in Gabon, Africa. However, it is not clear whether 
this relationship is of a similar nature and strength across different 
regions, or even the entire tropics. If existent, then, the use of such a 
structure–diversity relationship(s) could be applied at a pan-tropical 
scale with the rapidly increasing availability of spaceborne canopy 
structure information derived from the Global Ecosystem Dynamics 
Investigation (GEDI), a full-waveform spaceborne lidar system 
(Dubayah, Blair, et al., 2020). GEDI is expected to provide over 10 
billion measurements of vertical canopy structure across the tem-
perate and tropical forests between 2019 and 2021.

Factors influencing tree species diversity on a global scale dif-
fer from those affecting spatial patterns at regional or local scales. 
In general, tropical tree species diversity increases with increasing 
precipitation, forest stature, soil fertility, time since catastrophic 
disturbance, and rate of canopy turnover; and decreases with sea-
sonality, latitude and altitude (Givnish, 1999). At large-grain scales 
historical biogeographical processes are more important, whereas 
at the plot scale environmental variables strongly influence diversity 
(Keil & Chase, 2019).

Similar to species diversity, forest structure at the global scale 
is influenced by interacting historic, environmental and human-re-
lated variables, precipitation in the wettest month being the most 
important single predictor of plant height (Moles et al., 2009). Forest 
structure measured in the field is mainly comprised of four vari-
ables: canopy height, biomass, basal area and tree density (Palace 

et al., 2015). However, active remote sensing techniques have rev-
olutionized the study of canopy structure (Newnham et al., 2015). 
With lidar remote sensing, for example, it is now possible to obtain 
information on canopy height, as well as the position and amount of 
plant material along the vertical axis of the canopy (Tang et al., 2012). 
Palace et al. (2015) stressed that high resolution lidar data possess 
vertical structure information that is inherently linked to ecological 
processes.

We hypothesize that structure–diversity relationships will vary 
across different biogeographical and phylogenetic regions (Corlett 
& Primack, 2011; Slik et al., 2018) and that it may be more fruitful 
to develop multiple relationships rather than one pan-tropical re-
lationship for operationalizing tree species diversity mapping with 
spaceborne active remote sensing data. Additionally, the strength 
of the relationship between a variable and tree species diversity 
often changes with resolution (plot size) as tree species diversity 
is not linearly related with area (species–area curve) (MacArthur & 
Wilson, 1967). This complicates the development of predictive mod-
els at specific resolutions, and also limits the extrapolation of esti-
mates at one resolution to a larger area, which impedes the mapping 
of pan-tropical tree species diversity at high spatial resolution.

In sum, we know that both species diversity and canopy struc-
ture vary greatly within and across continents. Hence, our objective 
is to assess whether canopy structure information can explain tree 
species richness at the local, regional and/or pan-tropical scale with 
the ultimate goal to evaluate the efficacy of spaceborne full-wave-
form lidar for mapping tree species richness across the tropics. 
First, we compare characteristics of the vertical canopy structure, 
measured with full-waveform lidar data, for tropical forests across 
the world. Second, we evaluate the differences in species richness 
and species–area curves across the different study sites using field 
measurements. Third, we evaluate the potential for developing 
local (within 25–50 ha field plots), regional (within biogeographical 
regions) and pan-tropical structure–richness relationships, relating 
canopy structure metrics from lidar to tree species richness mea-
surements from the field at three spatial resolutions (0.0625, 0.25 
and 1.0 ha). Lastly, we discuss the potential of full-waveform lidar 
data from GEDI for mapping tree species richness across the tropics 
using structure–richness relationships.

2  | MATERIAL S AND METHODS

We address the relationship between canopy structure and tree 
species richness in terra firme forest in the tropical region between 
23.5° N and S. We compiled a field and lidar data set covering colo-
nizing forest, old-growth tropical forest and forests under different 
degrees of degradation and savanna. We included such a wide vari-
ety of forest stages as most of the Earth’s tropical forests have been 
degraded or otherwise affected by natural and human influences 
(Lewis et al., 2015). Hence, when developing a method that allows 
for estimating pan-tropical tree species richness it is important to 
include data covering this range of possibilities.
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Species diversity can be expressed with a variety of indicators. 
Generally, three levels of diversity are recognized: α-, β- and γ-di-
versity. α-diversity refers to the local diversity of a community, 
habitat or field plot. β-diversity refers to the differences in diversity 
between habitats and γ-diversity to the total diversity of a region 
(Colwell, 2009). In this study, we focus on α-diversity. α-diversity can 
be expressed with many different metrics. In this study, we focus on 
one dimension of species diversity: species richness (S) expressed 
as the total number of species in a plot of a given size. From here on 
forward, we only refer to tree species richness, used to express the 
local tree species diversity. We chose species richness as it is easy 
to interpret, and it can probably be used most directly by ecosystem 
managers. This measure of species diversity is sometimes referred 
to as species density as it does not consider the number of trees 
sampled in each plot.

2.1 | Field data sets

Field data were used to calculate the reference values of tree spe-
cies richness. We used 15 data sets: one from Australia, two from 
Southeast Asia, six from Africa, three from South America and three 
from Central America (Figure 1). All field data sets used in this study 
have been previously collected and published and have coincident 
airborne lidar data available. Each field data set is labelled with a 
three-letter code and contains information on tree location, species, 
and diameter at breast height (DBH). All data sets were collected 
by different organizations and research teams resulting in different 
data characteristics (Table 1, Supporting Information Appendix S1). 
Four data sets consisted of one large plot of 25 ha (rob, Australia and 
rab, Gabon) or 50 ha (dan, Malaysia and bci, Panama). The other 11 
data sets consisted of multiple (3–21) smaller plots with sizes ranging 
from 0.16 to 4.0 ha.

In this study, we assessed the structure–richness relationship at 
three spatial resolutions (1.0, 0.25, 0.0625 ha) because of the non-
linear relationship between the number of tree species (S) and sam-
pled area. We selected squares of 1.0 ha (100 m × 100 m) because 
they are often used in ecology and it has been shown that the spatial 

mismatch of plot location and remote sensing products is minimized 
at this resolution (Réjou-Méchain et al., 2014). We used squares of 
0.25 ha (50 m ×50 m) because these yielded the best results describ-
ing the structure–diversity relationship in Gabon (Marselis et al., 
2019), and squares of 0.0625 ha (25 m × 25 m) because they corre-
spond to a resolution close to the GEDI footprint size. The data sets 
were used at one, two or three of the aforementioned resolutions 
depending on the original plot size and the availability of stem maps 
or subplots (Table 1, full table in Supporting Information Appendix 
S1). For each of the field sites, we calculated S for the entire data set 
and for each plot at each plot size (Table 2). Only live trees with a 
DBH ≥ 10 cm were included, to ensure consistency among data sets, 
and we included all plots of each resolution in which more than 80% 
of the trees were identified to at least the genus level.

2.2 | Lidar data sets

Each of the field data sets had coincident discrete return airborne 
laser scanning (ALS) data, or full-waveform lidar data from the Land 
Vegetation and Ice Sensor (LVIS), collected over the field plots 
within 5 years of field data collection. We used the GEDI simula-
tor (Hancock et al., 2019) to create lidar waveforms from the ALS 
data over the field plots. The ALS data were originally collected 
with a variety of airborne instruments, but the GEDI simulator 
ensures a reliable GEDI-like waveform with minimal influence of 
the original instrument-specific characteristics. In this way, all lidar 
information could be processed consistently across all study sites 
ensuring a reliable inter-comparison of canopy structure metrics 
derived from the waveforms and allowing for easy transfer of the 
developed models to future on-orbit GEDI data. Lidar waveforms 
were simulated with a 22-m ground footprint (Gaussian distribu-
tion of laser energy, σ = 5.5 m). Lidar waveform locations were 
determined by filling each field plot, using the original field plot 
size and shape, with footprint centre locations 6.25 m from the 
plot edge and 5 m between footprint centre locations (Figure 2). 
This allowed a reliable measure of canopy structure to be acquired 
for each plot by averaging lidar metrics from all waveforms inside 

F I G U R E  1   Location of field sites across the three continents; colours of each study site are consistent throughout the paper. Gridlines 
indicate 10° intervals in longitudinal and latitudinal directions. The size of the place markers represents the size of the total sampled area 
relative to each other
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the plot, instead of using single waveforms in the plot centre 
and evaluating structure–richness relationships based on such 
potentially unrepresentative waveforms. The following informa-
tion was extracted from each simulated lidar waveform using ma-
ture and published algorithms: canopy height (expressed as the 
98th percentile of the relative height metric; RH98), total plant 
area index (PAI), and plant area index at a 1-m vertical resolution 
(Drake, Dubayah, Knox, Clark, & Blair, 2002; Hancock et al., 2019; 
Marselis et al., 2018; Tang et al., 2012). The 1-m vertical profile 

was used to compare the canopy structure across the study sites. 
It was aggregated into a 10-m vertical profile, summing all PAI val-
ues in each 10-m vertical bin, to be used in the structure–richness 
analyses. We chose to use the PAI profile because it is a biophysi-
cal variable describing the amount of plant material along the ver-
tical forest axis, thus, directly indicating the occupation of vertical 
space. Marselis et al. (2019) previously showed this information 
relates well to tree species richness in Africa. The average of each 
of the resulting metrics from all waveforms within each plot was 

Country
Project 
code

No. native 
plots

Total 
area (ha) Source/additional information

Oceania

Australia rob 1 25 Bradford, Metcalfe, Ford, Liddell, 
and McKeown (2014)

Southeast Asia

Malaysia dan 1 50 https://fores tgeo.si.edu/sites/ 
asia/danum -valley

Malaysia sep 9 36 https://www.fores tplots.net/
en/; Jucker et al. (2018); Lopez-
Gonzalez, Lewis, Burkitt, and 
Phillips (2011); Lopez-Gonzalez, 
Lewis, Burkitt, Baker, and 
Phillips (2009)

Africa

DRC mal 21 21 Bastin et al. (2015)

DRC yan 9 9 Kearsley et al. (2013)

Gabon rab 1 25 https://fores tgeo.si.edu/sites/ 
afric a/rabi; Memiaghe, Lutz, 
Korte, Alonso, and Kenfack 
(2016); Engone Obiang et al. 
(2019)

Gabon lop 11 9.5 https://www.fores tplots.net/
en/; Labrière et al. (2018)

Gabon mon 12 12 Fatoyinbo et al. (2017)

Gabon mab 10 10 Bastin et al. (2015); Labrière 
et al. (2018)

South America

Peru tam 6 6 https://www.fores tplots.net/
en/; Boyd, Hill, Hopkinson, and 
Baker (2013)

Brazil s11 8 1.44 http://www.paisa gensl idar.
cnptia.embra pa.br/webgi s/

Brazil s12 21 3.36 http://www.paisa gensl idar.
cnptia.embra pa.br/webgi s/

Central America

Costa Rica lsv 18 9 https://tropi calst udies.org/carbo 
no-proje ct/; Clark and Clark 
(2000)

Costa Rica cha 3 2 http://neose lvas.wordp ress.
uconn.edu/costa -rica/

Panama bci 1 50 https://fores tgeo.si.edu/sites/ 
neotr opics/ barro -color ado-
islan d; Lobo and Dalling (2013)

TA B L E  1   Information on the original 
plot size, the amount of total area sampled 
in the field and the source of the data, 
which is either a website where the data 
are published and/or a publication in 
which the data are described further

https://forestgeo.si.edu/sites/asia/danum-valley
https://forestgeo.si.edu/sites/asia/danum-valley
https://www.forestplots.net/en/
https://www.forestplots.net/en/
https://forestgeo.si.edu/sites/africa/rabi;
https://forestgeo.si.edu/sites/africa/rabi;
https://www.forestplots.net/en/;
https://www.forestplots.net/en/;
https://www.forestplots.net/en/
https://www.forestplots.net/en/
http://www.paisagenslidar.cnptia.embrapa.br/webgis/
http://www.paisagenslidar.cnptia.embrapa.br/webgis/
http://www.paisagenslidar.cnptia.embrapa.br/webgis/
http://www.paisagenslidar.cnptia.embrapa.br/webgis/
https://tropicalstudies.org/carbono-project/;
https://tropicalstudies.org/carbono-project/;
http://neoselvas.wordpress.uconn.edu/costa-rica/
http://neoselvas.wordpress.uconn.edu/costa-rica/
https://forestgeo.si.edu/sites/neotropics/barro-colorado-island;
https://forestgeo.si.edu/sites/neotropics/barro-colorado-island;
https://forestgeo.si.edu/sites/neotropics/barro-colorado-island;
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computed to represent the canopy structure for each plot at each 
spatial resolution.

2.3 | Canopy structure across the tropics

To evaluate the canopy characteristics across the different study 
sites, we calculated the median plant area volume density profile 
(composed of the PAI values for each 1-m vertical bin), using all simu-
lated lidar waveforms for each study site. In addition to the median 
(50th percentile), we calculated the 10th, 30th, 70th and 90th per-
centiles of the PAI values in the same 1-m vertical bins, to provide 
a representative distribution of the canopy structure across each 
study site.

2.4 | Species–area relationships across the tropics

We created species–area relationships, calculating the mean and 
standard deviation of S for plot sizes ranging between 0.01 and 
50 ha, to assess how species richness changes by plot size across our 
study sites. Each of the original field plots was filled with as many 
non-overlapping subplots as possible at 17 spatial resolutions (0.01, 
0.0225, 0.04, 0.09, 0.16, 0.25, 0.36, 0.64, 1.0, 2.25, 4.00, 6.25, 9.00, 
12.25, 16.0, 25.0, 50.0 ha) with each tree assigned to a subplot at 

each resolution. The plot sizes used at each study site depended on 
the original plot size and the availability of stem maps (Supporting 
Information Appendix S1). We visualized the mean and standard de-
viation of S for each plot size at each study site to evaluate the dif-
ferences in species–area curves across the tropics.

2.5 | Structure–richness analysis

To evaluate the existence of a relationship between vertical canopy 
structure and tree species richness across the tropics, we developed 
models at three scales: local, regional and pan-tropical, because 
many historical and environmental drivers of (tree) species diversity 
have stronger or weaker relationships depending on the scale of ob-
servation (Gaston, 2000; Keil & Chase, 2019) as do different ecosys-
tem functions (Chisholm et al., 2013). Definitions of the scales are 
presented in the following sections.

2.5.1 | Local analysis

The local analysis focused on the structure–richness relationship 
within large (25 or 50 ha) plots. We used data from adjacent field plots 
to evaluate the relationship between S and the canopy structure ex-
pressed as canopy height (RH98), total PAI and vertical canopy profile 

TA B L E  2   The total number of species identified at each study site and the average (x̄ ) and standard deviation (SD) of the species richness 
for each of the three plot sizes expressed as x̄  ± SD [including only live trees with diameter at breast height (DBH) ≥ 10 cm]

Country
Project 
code

Total no. 
species

Total sampled area 
used (ha)

Species richness 
1.0 ha

Species richness 
0.25 ha

Species 
richness 
0.0625 ha

Oceania

Australia rob 205 25 98 ± 10 56 ± 8 27 ± 5

Southeast Asia

Malaysia dan 260 6 117 ± 13 51 ± 7 19 ± 4

Malaysia sep 517 32 102 ± 22 53 ± 11 –

Africa

DRC mal 116 21 37 ± 11 20 ± 7 –

DRC yan 232 9 50 ± 23 24 ± 13 10 ± 6

Gabon rab 234 25 84 ± 8 42 ± 6 17 ± 4

Gabon lop 118 9.5 32 ± 22 17 ± 10 8 ± 4

Gabon mon 146 12 32 ± 15 15 ± 9 7 ± 5

Gabon mab 196 10 55 ± 8 – –

South America

Peru tam 517 6 171 ± 13 70 ± 9 24 ± 5

Brazil s11 91 1.44 – – 17 ± 3

Brazil s12 135 3.36 – – 16 ± 4

Central America

Costa Rica lsv 216 9 – 48 ± 8 19 ± 5

Costa Rica cha 81 2 58 28 ± 5 13 ± 4

Panama bci 220 50 87 ± 8 42 ± 6 17 ± 3
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(PAI at 10-m vertical intervals). The local analysis was performed on 
data collected in bci (50 ha), rab and rob (25 ha). The other 50-ha plot 
(dan) was not suitable for this analysis because the species identifica-
tion was incomplete at the time of analysis (Table 1). We related the 
canopy structure with S using a generalized linear model with a Poisson 
error distribution. We used fivefold cross-validation, extracting 20% of 
the data at random in each fold as test data. We first performed fea-
ture selection on the training data, choosing the model with the lowest 
Bayesian information criterion (BIC) score, and then, constructed the 
predictive model based on the same training data. We evaluated model 
performance using R2, root mean squared difference as a percentage 
of the mean (RMSD%) and bias based on the predictions for the test 
data (Piñeiro, Perelman, Guerschman, & Paruelo, 2008). The average 
and 95% confidence interval of these metrics were recorded for each 
study site at each resolution.

2.5.2 | Regional and pan-tropical analysis

The regional analysis was focused on the structure–richness relationship 
based on non-adjacent plots across study sites within the same biogeo-
graphical zone. We evaluated different combinations of study sites at 
three spatial resolutions (Table 3). To prevent the large plots from domi-
nating the regional and pan-tropical analyses, we thinned their contri-
bution to both the regional and pan-tropical data sets. From the 25-ha 
plots, we selected 1.0-ha plots at each corner, and from the 50-ha plots, 

we selected all corner and the middle plots along the long sides of the 
plot (six 1.0-ha plots total). To avoid mixing local and regional effects, 
we employed a Monte-Carlo simulation approach in which we drew dif-
ferent samples from the full regional data set. In each Monte-Carlo run, 
we randomly sampled one plot at the given resolution from each original 
plot location (especially important at the 0.25 and 0.0625 ha resolutions 
at which up to 16 plots exist at the location of each original 1.0-ha plot) 
and applied a cross-validation (80/20) or leave-one-out cross validation 
(if n ≤ 25) approach. In the cross-validation, we again performed a two-
step approach: first, we performed variable selection on the Poisson re-
gression model choosing the model with lowest BIC (using the bestglm 
(McLeod, Xu, & Lai, 2020) package in R Core Team (2020)), and then, built 
the predictive model with the chosen variables. We applied the model to 
the test data and calculated the model performance statistics for each 
fold according to Piñeiro et al. (2008).

The pan-tropical analysis focused on the structure–richness rela-
tionship combining the information from all 15 study sites across all 
tropical regions, in other words, it was a special case of the regional 
analysis in which data from all sites were included. Thus, the same 
methods were applied as in the regional analysis.

3  | RESULTS

3.1 | Vertical forest structure across the tropics

The vertical canopy structure of forests, in terms of the vertical dis-
tribution of plant material, varies between tropical regions (Figure 3). 
Maximum canopy height in our study sites in the Neotropics and 
Central Africa is typically around 40 m, and slightly lower in Australia, 
while canopy heights in Southeast Asia exceed 60 m. Many sites show a 
distinct understorey layer and a decrease in plant material through the 
canopy. Relative to the understorey, the canopy layer sharply declines 
in vegetation density (sep and dan, Malaysia) or steadily declines along 
the vertical axis (bci, Panama; rab, Gabon; mal, DRC; rob, Australia). This 
vertical distribution of declining vegetation is exacerbated in degraded 
forests: in s11, s12 (Brazil) and mon (Gabon), where the bulk of the veg-
etation exists close to the forest floor at c. 5 m height, but remnant 
trees in some plots may reach 40 m. Other sites, especially undisturbed 
ones, have distinct canopy layers. In tam (Peru) and in the old-growth 
forest in lsv (Costa Rica) there are multiple peaks of high-density veg-
etation across the vertical strata of the forest. The profiles of yan (DRC) 
and lop (Gabon) are characterized by a multiple-peak pattern, with one 
peak 20–30 m in the canopy and another within 5 m of the ground, re-
flecting the inherent structure of the forest–savanna mosaic. The less 
disturbed mab (Gabon) forest shows high variability in canopy struc-
ture between plots (e.g. the wide shaded area in Figure 3).

3.2 | Species–area relationships

The number of species increases with plot size, but the rate of in-
crease varies across study sites (Figure 4). For example, in rob 

F I G U R E  2   Illustration of simulated lidar waveform layout. The 
waveforms (red circles) have a Gaussian energy distribution with 
σ = 5.5 m, resulting in a roughly 22-m diameter footprint. Example 
of simulated footprint distribution locations in a 1.0 (solid outline), 
0.25 and 0.0625 ha field plot (dashed outline). Note: this footprint 
distribution was chosen to accurately depict canopy structure 
within the 0.0625, 0.25 and 1.0 ha plots but it does not represent 
the spatial distribution of spaceborne Global Ecosystem Dynamics 
Investigation (GEDI) waveforms
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(Australia) 82–117 species occur in a 1.0-ha plot compared to 16–44 
species in 0.0625-ha plots. By contrast, tam (Peru) contains 154–185 
species/ha, but only 11–35 species in a 0.0625-ha plot, similar to rob. 
Thus, species’ composition of adjacent 0.0625-ha plots in tam must 
be more dissimilar from each other than adjacent 0.0625-ha plots 
in rob (Australia), in other words, the β-diversity of the plots in tam 
is higher than in rob. The species–area curves vary in shape across 
study sites, with the highest total species richness in tam and low-
est species richness in the African sites (Figure 4). Curves that are 
initially steep and decrease in slope at larger plot sizes indicate a high 

α-diversity but a lower β-diversity (e.g. when the area is increased, 
the same species are encountered).

3.3 | Structure–richness relationships

Pulling together the information on tree species richness and canopy 
structure (RH98 and total PAI), species richness generally increases 
with increasing canopy height and increasing total plant area index 
across the tropics (Figure 5).

F I G U R E  3   Canopy structure expressed as the plant area volume density profile (PAVD), expressing the plant area index for each 
1-m vertical bin, displayed as the median of all plots within each study site (solid line), the 30th–70th percentile (darker shaded area) and 
10th–90th percentile (lighter shaded area)
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The cross-validation results of the local models reveal weak 
structure–richness relationships. Of the three large plots (25 and 
50 ha), only the models for bci (50 ha) show evidence of a significant 
relationship between the predicted and observed values (R2 = .32 
at 1.0 ha, Supporting Information Appendix S2). Even though spe-
cies richness within all three large plots can be predicted with a root 
mean squared error between 7% and 20% of the mean species rich-
ness, the low RMSD% found only indicates that the predictions at 
the local scale are close to the mean species richness; however, in 
rab and rob the canopy structure is insensitive to the local variation 
in tree species richness (see for example Supporting Information 
Appendix SI2).

Regional structure–richness models generally show much bet-
ter performance (Figure 6) than the local models in terms of the 
variance in species richness that can be explained with the can-
opy structure information (mostly significant models and higher 
R2 values). However, prediction error (as percentage of the mean 
species richness) is generally higher, partly due to the larger 
range in species richness in these regional data sets. Regions of 
Africa and South America (Table 3) show the best model perfor-
mance whereas regions including the Costa Rica data sets show 
much poorer performance (regions indicated with centralamerica). 
Results from an additional analysis on the compositional simi-
larity (Bray–Curtis; Faith, Minchin, & Belbin, 1987; Supporting 
Information Appendix S3) of the Costa Rica data set showed that, 
even though species richness varies in Costa Rica (Table 2), the 
plots share many species, that is, the composition is similar. In the 
africa and southamerica data sets the variation in species richness 
is accompanied by a much larger variation in species composition 
(Supporting Information Appendix S3). The variation of the model 
performance for seasia is very high because of the low number 
of plots available for this region and at the 0.25-ha resolution it 
was not possible to create a significant model for > 95% of the 
Monte-Carlo iterations (Table 3). The model performance does 
not provide clear results on the effect of the different resolutions, 
given the overlapping error bars for models in the same region at 

multiple resolutions and the inability to create each regional model 
at each spatial resolution (Figure 6).

Pan-tropical structure–richness models show varying perfor-
mance across the spatial resolutions with mean R2 ranging between 
.25 and .39 and RMSD% between 66% and 43% for the plot sizes 
from 1.0 and 0.0625 ha (Figure 7). However, the error bars of the 
model performance at different resolutions are overlapping, indicat-
ing that no resolution has a statistically better performance. Around 
39% of the variation in tree species richness can be explained using 
canopy structure metrics alone at the 0.25-ha resolution at the 
pan-tropical scale. Sites with extremely high values of observed spe-
cies richness are generally predicted poorly (Supporting Information 
Appendix S4).

4  | DISCUSSION

4.1 | Structure–richness relationships across scales

In this study, we explored the relationships between vertical canopy 
structure and tree species richness at different resolutions across 
local, regional and pan-tropical scales, using a total of 15 study sites 
with coincident lidar and field data across the tropics. We found 
weak relationships between canopy structure and tree species rich-
ness at the local scale and the strongest relationship at the regional 
scales in Africa and South America. We also found significant rela-
tionships between canopy structure and tree species richness com-
bining the data from all study sites across the tropics.

At the local scale, within one large plot inside one forest type, 
the variation in the canopy structure is determined mostly by vari-
ability in growth structure within the same species (the 25 and 50 ha 
plots have a similar composition throughout the plot, Supporting 
Information Appendix S1 and S3). For example, an adult tree of spe-
cies X may range in height from 20–40 m, so even though the canopy 
structure may differ between two plots of similar composition, the 
difference is not attributed to a difference in species composition. 

F I G U R E  4   Relationships between tree species richness and area for each study site (note the change in y axis across panels from left to 
right)
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Furthermore, if a 20 m and 40 m tree of species X exist in the same 
plot, due to the difference in canopy structure the model may pre-
dict a species richness of 2 based on variation in structure. On the 
contrary, as area increases it is more likely that the difference in 
structure is caused by a difference in composition. Do keep in mind 
that structure can also change due to other variables such as topog-
raphy, soil and microclimate. Individuals of most tropical forest spe-
cies are spatially aggregated (Condit et al., 2000) so the composition 
of two adjacent plots is more similar than the composition of two 
more distant plots. This is the case for bci, where a 50-ha area with 

a species richness gradient was sampled (Fricker, Wolf, Saatchi, & 
Gillespie, 2015) and included in the local analysis, which led to more 
successful prediction of species richness based on structure. Within 
the 25-ha plots sampled at rab and rob, the variation in composition 
is smaller and no significant structure–richness relationships were 
found (Supporting Information Appendix S3).

Increasing the scale, we found that regions consisting of sites ex-
hibiting a large variation in species composition among plots, but with 
a similar biogeographical history, show a much stronger structure–
richness relationship. However, we note that model performance 

F I G U R E  5   Relationship between 
canopy height (left) and total plant area 
index (PAI; right) across three spatial 
scales for all study sites across the tropics. 
Each point represents one plot at the 
specific resolution. Dots are coloured by 
study site corresponding according to 
legend in Figure 1
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differed quite drastically across regions. The forest in lsv, Costa Rica, 
consists of largely similar species composition, whereas species 
composition is much more varied in regions where the structure–
richness models perform better (South America, Africa), supporting 
the result from local scale models that species richness can be better 
predicted from canopy structure in areas with greater β-diversity.

At the pan-tropical scale, we find a significant relationship be-
tween canopy structure and tree species richness across all spatial 
resolutions. At the intermediate resolution (0. 25 ha) this relation-
ship appears to be slightly stronger than at the higher and lower 
resolutions, but no significant difference was found. However, the 
observed difference may be attributed to the lower sensitivity of 
species richness to rare species at smaller plot sizes. For example, 
tam (Peru) plots have very high species richness at the 1.0-ha res-
olution (Table 2), whereas at the 0.0625-ha resolution the species 
richness ranges between 11 and 35 species, which is still higher than 

most other sites but much less than at the 1.0-ha plot size. Because 
the 1.0-ha plot size captures more rare species in each plot, the 1.0-
ha pan-tropical model predictions for tam contain highly erroneous 
predictions that are not present in 0.0625-ha models (Supporting 
Information Appendix SI4). Rare species do not contribute much 
to the canopy structure, thereby complicating the relationship be-
tween structure and richness at a scale at which they contribute 
largely to species richness numbers.

4.2 | Limitations

This research could be significantly improved by using more coin-
cident lidar and field data to thoroughly evaluate the existence 
and strength of the structure–richness relationship across all 
tropical regions. However, the collection of such data is costly and 

F I G U R E  6   Cross-validated model performance of regional structure–richness models. Error bars indicate the 95% range of values 
for each performance metric. Solid dots indicate > 95% of the generated models was statistically significant, open circles indicate a 
lower percentage was significant. RMSD% = root mean squared difference as a percentage of the mean

F I G U R E  7   Cross-validated model performance at the pan-tropical scale in terms of R2 and root mean squared difference as a percentage 
of the mean (RMSD%). Error bars indicate the range between which 95% of the performance values of the cross-validated models fall
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time-consuming. Here, we were able to exploit 15 independently 
collected data sets (Supporting Information Appendix S1), but data 
gaps exist, especially in the Amazon basin, high biomass forests of 
Central Africa, the mainland of Southeast Asia, New Guinea and 
Australia as well as the dry tropics and montane ecosystems. Apart 
from the spatial representation problem, the low number of plots 
for certain regions likely influences the observed variability in model 
performance. The pan-tropical models (with n ≥ 90) show more sta-
ble performance than models of regions with low numbers of plots 
(e.g. seasia). A training data set that does not fully represent the 
range of structure in the full data set can lead to biased predictions 
for some of the test plots. Such errors are exacerbated by the loga-
rithmic link model in Poisson regression because errors can increase 
exponentially. Even so, negative predictions are possible with linear 
regression and the risk of underestimating tree species richness is 
higher for diverse areas. Hence, we chose to use Poisson regression, 
knowing that it may lead to extreme predictions in some cases that 
should be accounted for when operationalizing this method.

Species diversity can be identified in many different ways 
(Colwell, 2009; Gotelli & Colwell, 2001) and there are risks and pit-
falls using just one metric. In this study, we only used ‘species rich-
ness’ (S), defined by the number of different tree species in a defined 
area (the plot, with different sizes), as this metric is easy to interpret 
and a prediction of the number of species/area can probably be used 
most directly by ecosystem managers. Hereby, we did not control for 
the number of stems in the plot, nor for the abundance of the dif-
ferent species. Such information can be considered, for example, by 
using the Shannon diversity index or rarefaction curves. Moreover, 
depending on the type of metric, a different model may need to be 
selected to describe the structure–richness relationship as differ-
ent metrics are related differently to canopy structure information. 
For example, a generalized linear regression with a Poisson error 
distribution, as used here, is more suitable for estimated tree spe-
cies richness values as these are count data, whereas a linear model 
with a Gaussian error distribution will be better suited for estimating 
Shannon diversity. Hence, we chose to focus on one metric of di-
versity to test the structure–richness relationships, while acknowl-
edging other metrics may provide better, worse, or more useful 
predictions of tree species diversity and these should be considered 
in the future.

This study serves as a first attempt to study the pan-tropical 
structure–richness relationship and should be improved and further 
developed when more data become available. Additionally, the char-
acteristics of each data set differed widely because all data were col-
lected by different researchers and institutions. We accounted for 
this as much as possible by using data sets only at reliable plot and 
subplot resolutions, including only trees ≥ 10 cm DBH and including 
only plots with less than 20% of unidentified trees at the genus level. 
Nonetheless, we acknowledge that the quality of the species iden-
tification varied and may have affected our models as species iden-
tification in the tropics can be challenging due to the vast variety 
of tree species and the fact that new species are still encountered. 

Species identification of new and existing data could be improved 
using more botanists or genetic tests in the lab, which has been done 
for some of the data sets used here, but is not yet feasible for all data 
sets. Additionally, including information on species for trees with 
DBH >= 10 cm omits the (large) diversity found in the understorey. 
Fricker et al. (2015) showed that especially this diversity variation 
in small trees related well to the canopy structure. Future research 
should examine if these findings are consistent across the tropics.

The availability of stem maps and subplots in each study site de-
termined the spatial resolutions at which data sets could be used. 
This resulted in the inclusion of different data sets for each region 
(Table 3). This makes the comparison of model performance in the 
same region at different resolutions unreliable because the models 
were not always built on the same data (plots and study sites), but 
we weighed this decision to maximize the sizes of the data sets used 
to build the structure–richness models. Hence, no conclusion can 
be drawn about the optimal resolution for the structure–richness 
relationships.

Accurate geolocation of field plots is key for the development 
of reliable species-richness models (Fricker et al., 2015). However, 
geolocation of field plots in tropical forests can be challenging due 
to difficulties receiving a reliable GPS signal under dense canopy. 
This should be taken into account, especially when evaluating the 
performance of models built with small field plots, where the effects 
of such geolocation errors will be larger (Réjou-Méchain et al., 2014).

We included data from a range of forest stages, including old-
growth forest, successional stages, disturbed forest and even low 
tree density savanna sites. The relationships we found are partially 
driven by this gradient (Figure 5). However, we deemed it essential 
to include data from across this range of forest types, because if 
this method is to be operationalized using canopy structure infor-
mation from across the tropics, we will encounter all these different 
stages of forest (Lewis et al., 2015). We acknowledge that climatic, 
edaphic and topographic variables could also impact tree species 
richness across the tropics, such as mean annual temperature and 
precipitation (Keil & Chase, 2019) and slope and elevation (Robinson 
et al., 2018). However, in this study, we specifically focused on the 
relationship between canopy structure and tree species diversity, 
in light of the recently launched GEDI mission. We recognize that 
including such information on topographic and environmental vari-
ables may further improve the mapping of tree species richness 
across the tropics.

4.3 | Future research & applications

Our results provide confidence regarding the existence of regional 
and pan-tropical structure–richness relationships that may be used 
to map pan-tropical tree species richness. The most accurate predic-
tions seem to be achieved at the regional scale when adequate data 
are available and when forested areas are grouped by regions of sim-
ilar biogeographical history. However, in the absence of such data it 
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may be of more immediate interest to further develop pan-tropical 
models, as these have been shown here to explain up to 39% of 
variation in tree species richness. At the time of writing, GEDI is col-
lecting canopy structure information close to the finest resolution 
tested here (0.0625 ha) and thus, these data may be well suited for 
mapping tree species richness across the tropics. GEDI is a sampling 
mission in which lidar waveforms with 25-m diameter footprints are 
collected across eight tracks with 600-m between-track spacing, 
60-m along-track spacing (Figure 8). By the end of its nominal 2-year 
mission, GEDI will have sampled roughly 4% of total land area.

The footprint-level GEDI information on vertical canopy struc-
ture is stored in the Level-2 data products that are publicly avail-
able from the NASA Land Processes Distributed Active Archive 
Center (LPDAAC; https://lpdaac.usgs.gov; Dubayah, Hofton, 
et al., 2020; Dubayah, Luthcke, et al., 2020; Dubayah, Tang, et al., 
2020). GEDI gridded data products will have a 1-km2 or finer res-
olution (Dubayah, Blair, et al., 2020). Our local scale models show 
that predictions of adjacent 0.0625-ha plots (or in the future, 
footprints) are on average correct, but they will not detect local 
nuances in species richness within forests of uniform composition. 
We suggest that the species richness predictions could potentially 
be used in a similar way as gridded GEDI data products by estimat-
ing the average number of species/0.0625 ha within a 1-km2 cell, 
as such information may still be of interest to local land manag-
ers. Given the variable species–area relationships, it is not easy to 
translate species richness predictions at 0.0625-ha resolution to 
the expected number of tree species in 1 km2. Also, the amount of 
variance in species richness explained is limited. Therefore, we pro-
pose two future research avenues of interest: fusion with spectral 

and/or radar data and using an environmental framework. Both 
spectral data and radar data have previously been shown to pre-
dict some of the variance in tree species richness (Bae et al., 2019; 
Bongalov et al., 2019; Foody & Cutler, 2006; Marselis et al., 2019; 
Schäfer et al., 2016; Wolf et al., 2012) and may improve our models 
and allow for more accurate predictions of tree species richness 
across the tropics and the creation of wall-to-wall data products 
at higher spatial resolution. Especially data from the hyperspectral 
imager suite (Matsunaga et al., 2013) instrument, that is soon to be 
launched to the International Space Station, the radar BIOMASS 
mission (Le Toan et al., 2011), the Ice, Cloud and land Elevation 
Satellite 2 mission (Duncanson et al., 2020), the TerraSAR-X add-on 
for Digital Elevation Measurement mission (Qi, Saarela, Armston, 
Stahl, & Dubayah, 2019) and Landsat (Saarela et al., 2018), may 
be highly relevant for such applications. Alternatively, we believe 
that the inclusion of structural data within previously developed 
environmental and biogeographical frameworks will help to pre-
dict tree species diversity (Keil & Chase, 2019) as such frameworks 
already display intrinsic differences in tree species diversity. Such 
frameworks could benefit from GEDI lidar data providing infor-
mation on the occupation of the vertical niche space and likely 
improve predictions of tree species richness across the tropics, 
which could then be compared to existing predictions such as from 
Slik et al. (2015). Moreover, it has previously been shown that lidar 
data can provide interesting information about the diversity of 
other taxa as well (Huang, Swatantran, Dubayah, & Goetz, 2014; 
Rappaport, Royle, & Morton, 2020) and future avenues for using 
lidar data to provide information on a holistic measure of species 
diversity, including many taxa, could be of incredible value.

F I G U R E  8   (a) Example of Global Ecosystem Dynamics Investigation (GEDI) data captured over the east of Mondah forest, north-west 
of Libreville, in Gabon, Africa. The lidar waveforms are collected along-track with eight tracks, a between-track spacing of 600 m and an 
along-track spacing of 60 m. (b) Example GEDI waveform with relative height metrics (shot number = 31151116800411054; orbit = 03115; 
track = 05633) at the location indicated with the blue box on (a). (c) The accompanying plant area index (PAI) profile at 5-m vertical intervals 
from the Level-2 data product. RHx = relative height at which x percentage of the energy has been returned.

https://lpdaac.usgs.gov
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5  | CONCLUSIONS

In this study, we evaluated the existence of local, regional and pan-
tropical relationships between vertical canopy structure and tree 
species richness in the tropics at three spatial resolutions: 1.0, 0.25 
and 0.0625 ha. Full-waveform lidar data provide detailed informa-
tion on the differences in vertical canopy structure between forests 
across the tropics. Our results show that canopy structure can ex-
plain a significant percentage of variation in tree species richness 
across different biogeographical regions. A full set of regional struc-
ture–richness models will most likely aid accurate pan-tropical spe-
cies richness mapping, but the development of such a set of models 
is contingent on the availability of sufficient coincident field and lidar 
data across the tropics. Using one single predictive model at a pan-
tropical scale, 39% of the variation in tree species richness could 
be explained using the vertical canopy structure. Given this canopy 
structure is measured directly from GEDI waveforms at the footprint 
level, this provides an interesting avenue for mapping tree species 
richness at high spatial resolution. Alternatively, canopy structure 
information from GEDI could be included in existing modelling 
frameworks, combining structural with spectral, environmental and 
topographic information to create more accurate tree species rich-
ness predictions.
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Most of the field and lidar data used in this study are available and 
can be downloaded directly from the internet. Otherwise the data 
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sets can be requested as described below. We have grouped the 
data in four groups: (a) LVIS lidar data, (b) ALS lidar data, (c) field data 
and (d) GEDI lidar data.

(a) LVIS lidar data
The LVIS data for the rab, lop, mon and mab study sites can be 

downloaded from the NASA data archive at the following https://
doi.org/10.3334/ORNLD AAC/1591

The LVIS data for the cha and lsv study sites are available on the 
following website: https://lvis.gsfc.nasa.gov/Data/Maps/CR200 
5Map.html

(b) ALS lidar data
The ALS data over rob are available through the auscover data 

portal ftp://qld.ausco ver.org.au/airbo rne_valid ation/ lidar/ robso 
ns_creek/

The ALS data over s11 and s12 can be downloaded from the sus-
tainable landscapes data portal http://www.paisa gensl idar.cnptia.
embra pa.br/webgi s/

The ALS data over yan and mal are available through ArcGIS on-
line at https://www.arcgis.com/home/item.html?id=a6095 e7754 
1d4ad 88dc6 f0945 639d089

The ALS data over bci can be downloaded directly using the fol-
lowing download link: http://www.life.illin ois.edu/dalli ng/lidar_data.
tgz

The ALS data over tam are not publicly available online as they 
are actively supporting external research projects. However, anyone 
interested in working with this data can contact Chris Hopkinson 
(c.hopkinson@uleth.ca) or Ross Hill (rhill@bournemouth.ac.uk) to 
request access.

The ALS data over dan and sep are currently in the process of 
being made available through the Centre for Environmental Data 
Analysis (CEDA) https://www.ceda.ac.uk/

(c) Field data
Field data from rob have been published through the Terrestrial 

Ecosystem Research Network (TERN) data portal linked from 
https://super sites.tern.org.au/super sites/ fnqr-robson

The dan, rab and bci field data are all available on request 
through the Forestgeo website at https://fores tgeo.si.edu/explo 
re-data: https://fores tgeo.si.edu/explo re-data/rabi-terms condi 
tions reque st-form, https://fores tgeo.si.edu/explo re-data/barro 
-color ado-islan d-terms condi tions reque st-forms, https://fores 
tgeo.si.edu/explo re-data/danum -valle y-terms condi tions reque 
st-forms

The sep, lop, tam and yan field data are all available upon request 
through forestplots.net and can be found under the project names 
‘sepilok’, ‘lope’, ‘tambopata’ and ‘yangambi’ at https://www.fores 
tplots.net/en/

The mon field data are archived through the NASA data archiving 
center and available at https://doi.org/10.3334/ORNLD AAC/1580

The s11 and s12 data were available through the data portals 
of the sustainable landscapes projects and can be found under the 
field data from the São Félix do Xingu region collected in 2011 and 
2012 in the following data portal: http://www.paisa gensl idar.cnptia.
embra pa.br/webgi s/

The cha field data set can be requested here http://neose lvas.
wordp ress.uconn.edu/data/

The lsv data can be accessed through the following website: 
https://tropi calst udies.org/carbo no-proje ct/#15549 94367 217-
6bb19 222-75b7

The mab field data are available through the following website: 
https://github.com/umr-amap/centr afrip lots

The mal data are available upon request through https://www.
gfbin itiat ive.org/datar equest

(d) GEDI lidar data
The different lidar data products from GEDI used to create 

Figure 8 can be download through https://doi.org/10.5067/GEDI/
GEDI01_B.001, https://doi.org/10.5067/GEDI/GEDI02_A.001 and 
https://doi.org/10.5067/GEDI/GEDI02_B.001
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