Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism

Abstract
The mutualism between plants and arbuscular mycorrhizal fungi (AMF) is widespread and has persisted for over 400 million years. Although this mutualism depends on fair resource exchange between plants and fungi, inequality exists among partners despite mechanisms that regulate trade. Here, we use 33P and 14C isotopes and a split-root system to test for preferential allocation and reciprocal rewards in the plant–AMF symbiosis by presenting a plant with two AMF that differ in cooperativeness. We found that plants received more 33P from less cooperative AMF in the presence of another AMF species. This increase in 33P resulted in a reduced 14C cost per unit of 33P from less cooperative AMF when alternative options were available. Our results indicate that AMF diversity promotes cooperation between plants and AMF, which may be an important mechanism maintaining the evolutionary persistence of and diversity within the plant–AMF mutualism.

Keywords
biological markets, isotopes, microbial diversity, plant–AMF mutualism, split-root system, supply and demand.

INTRODUCTION

Biological market models are frequently used to understand resource exchange and the ecological persistence of cooperation among mutualists (Noë & Hammerstein 1994, 1995; Schwartz & Hoeksema 1998; Kummel & Salant 2006; Kiers & Denison 2008; de Mazancourt & Schwartz 2010). Although these models provide numerous predictions regarding the mechanisms that promote the ecological persistence of mutualisms, few empirical tests of resource exchange in mutualisms exist (Denison 2000; Kiers et al. 2011; Grman 2012; Verbruggen et al. 2012; Walder et al. 2012). Therefore, direct evidence of the underlying mechanisms that maintain mutualisms is scarce, especially for mutualisms involving a high diversity of species that span a range of cooperative behaviour such as the plant–arbuscular mycorrhizal fungi (AMF) mutualism (Sachs et al. 2004; Kiers & Van Der Heijden 2006; Walder & van der Heijden 2015).

Numerous theories have been applied to cooperation within mutualisms that are mainly developed from biological market, game and resource ratio theory (Noë & Hammerstein 1994; Hoeksema & Bruna 2000; Foster & Wenseleers 2006; de Mazancourt & Schwartz 2010; Archetti et al. 2011). A few predictions have developed from these theories that are important for the maintenance of mutualisms: (1) cooperators preferentially allocate resources to more beneficial partners thereby cooperative genotypes of the two partners preferentially associate with each other allowing cooperative genotypes to persist, (2) partner-fidelity feedbacks whereby the partners involved in the mutualism actively control the association (Sachs et al. 2004; Foster & Kokko 2006; Foster & Wenseleers 2006; Archetti et al. 2011). Overall, mutualisms will persist if the costs are low relative to the benefits (Foster & Wenseleers 2006; de Mazancourt & Schwartz 2010). However, resource availability and supply and demand of resources from other potential mutualists will alter the cooperation between partners (Noë & Hammerstein 1994; Grman 2012). Furthermore, these feedbacks may not be mutually exclusive and may operate simultaneously at different temporal and spatial scales.

Partner choice is an important component maintaining the plant–AMF mutualism (Kiers & Van Der Heijden 2006; Kiers & Denison 2008; Kiers et al. 2011; Walder & van der Heijden 2015). It has been suggested that both plants and AMF can discriminate between different mutualist partners and in turn preferentially allocate resources to more beneficial partners (Helgason et al. 2002; Fitter 2006; Kiers & Van Der Heijden 2006; Bever et al. 2009; Kiers et al. 2011). Sanctions and rewards in mutualisms are thought to be involved as enforcement mechanisms that stabilise mutualistic interactions (Kiers & Van Der Heijden 2006). For example, Denison (2000) found sanctions by legumes against less-effective rhizobial partners. Similarly, both Bever et al. (2009) and Kiers et al. (2011) separately showed that plants preferentially allocate carbon to more cooperative AMF partners. Therefore, when...
infected by multiple AMF, vascular plants can select more effective partners (Yoneyama et al. 2007; Kiers & Denison 2008). In addition, exchange of luxury goods, functional diversity and sink strength have also been suggested to explain resource exchange in the plant–AMF symbiosis (Walder & van der Heijden 2015).

Although partner choice can maintain the plant–AMF mutualism, it is not clear how plants and AMF recognise exploiters (Bronstein 2001; Archetti et al. 2011). The process of partner selection is further complicated by variation in environmental conditions, differences in specific plant–AMF combinations and the type of resource being exchanged (Grman 2012; Grman et al. 2012; Walder & van der Heijden 2015). Therefore, how sanctions and rewards mediate plant response to multiple AMF species, even in the exchange of a single resource or with only a few AMF species, remains unclear.

In our study, we used a simplified novel microcosm design that integrated a split-root system (Coutts & Philipson 1976) and a partitioned rhizosphere (e.g. a root compartment, an AMF compartment and an outer nutrient-labelling compartment; Fig. 1) to assess carbon allocation and phosphorus acquisition by a single plant in response to one or two AMF species. Dual 14C and 33P radio-labelling allowed us to track resource exchange in the plant–AMF mutualism. By using two plant species that differ in their mycorrhizal responsiveness in combination with two AMF species that vary in their beneficial effects on these two plant species (Wagg et al. 2011), we could test the effect of variable supply and demand economies on the plant–AMF mutualism. We hypothesised that carbon and phosphorus exchange depended on the identity of the AMF exchanging resources with the plant and the AMF competing for resource exchange on the opposite side of the root. In this concept, plants mediate resource exchange by interpreting the supply and demand of the AMF species present on the root system and responding with sanctions or rewards.

MATERIALS AND METHODS

Design of split-root systems

We grew host plants in microcosms and separated their root systems into two halves by means of a polyvinyl chloride (PVC) wall (Fig. 1). Each side of the split-root system was inoculated with one of two AMF species or was an uninoculated control. Both sides of the root system were further partitioned into three 200 mL compartments at increasing distance from the plant centre (0–2 cm, 2–4 cm, 4–6 cm) by 20-μm nylon mesh. This mesh allowed hyphae but not roots to pass through. Roots could therefore only colonise the two central compartments, while AMF could colonise all three compartments of a side. The outermost compartment was used to supply phosphorus that could only be accessed by the plant via the AMF. This setup allowed us to examine carbon investment from the plant to the AMF in exchange for the phosphorus acquired by the plant from the AMF partner.

Plant and AMF species

Soil from a natural grass-clover field (pH 6.7; Agroscope Reckenholz research station, Zürich, 47°25' N, 8°31' E) was sieved through a 5-mm mesh and mixed with quartz-sand (1 : 9 v/v). The mixture was sterilised by gamma irradiation (25–80 kGy; LEONI, Aargau, Switzerland) and filled into the central four microcosm compartments. The outermost compartments were filled with a polystyrene spacer to reduce desiccation and prevent algal growth. Immediately prior to the application of the phosphorus tracer (33P), the polystyrene was removed and filled with the same soil mixture.

Seeds of Plantago lanceolata L. (ribwort plantain; a less responsive mycorrhizal plant) and Trifolium pratense L. (red clover; a more responsive mycorrhizal plant) (FENACO, Bern, Switzerland) were surface sterilised by soaking in 5% aqueous hypochlorite solution for 10 min before rinsing four times with demineralised water and germination in sterile sand. The emerging seedlings were transplanted to individual pots and grown for 4 weeks until they were transplanted to the split-root microcosms. During transplanting, the main roots were clipped 2 cm below the shoot to promote lateral root growth. In each microcosm, two plants of the same species were supported with a 3-cm long quartz-sand-filled PVC tube that rested on the central PVC sheet dividing the root system. We used two individuals per microcosm to average differences in individual performance and symmetry and to ensure sufficient plant material for all the destructive measurements required to track resource exchange (see below).

Figure 1 Schematic of split-root system and rhizosphere partitioning. (a) An aerial view of the partitions showing six compartments. The outer two were used for phosphorus addition. The middle two were hyphal compartments, and the inner two were root compartments housing the split-root system of the plant. The 20-μm mesh screen, which prevented root growth across partitions and ensured movement of nutrients via AMF, can be seen between the three compartments on each side (indicated by the red arrow). (b) A view of the entire system. (c) A view of the plants established with roots split onto either side of the main partition.
Each of the two middle compartments of each side were amended with *Funnelformis mosseae* (Krüger et al. 2012), *Rhizophagus irregularis* (Krüger et al. 2012) or remained AMF-free with all three pairwise combinations realised (see Wagg et al. 2011, for details on AMF isolates). *Funnelformis mosseae* is relatively less cooperative than *R. irregularis* with respect to phosphorus exchange based on previous experiments manipulating plant and AMF combinations (see details on AMF species performance in Wagg et al. 2011; Argüello 2013). This design resulted in a full factorial combination of the six AMF treatments for each plant species: (1) a non-AMF control whereby neither side of the root was inoculated (none : none); (2, 3) a non-AMF control on one side of the root system and a single AMF species on the other side (none : AMF indicates either none : *F. mosseae* or none : *R. irregularis*); (4, 5) one AMF species inoculated on both sides of the root system (same AMF indicates either *F. mosseae* : *F. mosseae* or *R. irregularis* : *R. irregularis*); (6) two AMF species with one applied to each side of the root (two AMF indicates *F. mosseae* : *R. irregularis*).

In order to standardise the bacterial communities among AMF treatments, all pots also received 2.5 mL of a suspension prepared from 25 g of the soil mixture and washed. This wash was made by filtering (10 μm pore size) 5 L of a solution of rhizobium (OD580 nm of 0.2; 25 g of each AMF inoculum. We further applied 2 mL of a suspension containing 37 MBq of radiophosphorus (H33PO4). The labelling was organised in sets of six microcosms (determined by the number of microcosms that fit into the labelling chamber). These groups contained one pot with each AMF combination for only one plant species. A total of 16 groups were processed sequentially over a period of 6 weeks. Two consecutive groups formed a block, which were identical in terms of plant and AMF species, but the radiophosphorus label was applied to opposite sides of the microcosms. For example, two pots with *P. lanceolata* inoculated with *F. mosseae* on one side of the root system and *R. irregularis* on the other side were present in two consecutive groups, but in the first group 33P was applied to *F. mosseae*, while 32P was applied to *R. irregularis* in the second. Therefore, two pots with the same AMF treatment (e.g. *F. mosseae* : *R. irregularis* and *R. irregularis* : *F. mosseae*) differ only in which side 32P was applied. This design was required in order to test the contribution of 33P from a specific fungus while accounting for the fungus on the opposite side of the root system and was practically necessary because of limitations in the number of pots that could fit in the chamber for 14C labelling. In total, our experiment encompassed 96 microcosms (2 plant species × 6 AMF combinations × 2 pots of each combination in order to label opposite sides with 33P × 4 replicates).

Growth conditions

The microcosms were placed in a climate-controlled growth chamber with a 16/8-h light/dark cycle, a temperature of 21/16 °C (day/night), 60% relative humidity and an average photosynthetic photon flux density of 400 μmol photons m−2 s−1. The pots were watered every other day with deionised water and their positions were randomly changed every week to minimise differences in growth conditions for all the pots.

Plants were supplied with Hoagland solution (Hoagland & Arnon 1950) with half of the normal P concentration (6 mM of KNO3; 4 mM of Ca(NO3)2; 0.5 mM of NH4NO3; 1 mM of NH4H2PO4; 1 mM of MgSO4; 50 μM of KCl; 25 μM of H3BO3; 2 μM of MnSO4; 2 μM of ZnSO4; 0.5 μM of CuSO4; 0.5 μM of (NH4)6Mo7O24; 20 μM of Fe(Na)EDTA). Each root compartment of the split-root system received 2 mL of this nutrient solution every second week, just before the plants were watered, ensuring that the nutrients mixed well with the soil.

14C and 33P labelling

After 10 weeks, the polystyrene space holder was removed from the outermost compartments and replaced by soil substrate containing 37 MBq of radiophosphorus (H33PO4). The other side received the same amount of non-radioactive phosphorus. Two weeks after 32P labelling, plants were pulse labelled with 14CO2 in a transparent acrylic chamber. Throughout the labelling, the CO2 concentration was monitored with an infra red gas analyser (LiCOR 6200; LiCOR, Lincoln, Nebraska, USA) and maintained above 300 ppm by successively releasing 14CO2 from a sodium bicarbonate (NaH14CO3) solution by adding 5% H2SO4 with a syringe. The air within the chamber was mixed with a fan. The chamber was maintained at a reasonable temperature with a heat exchanger connected to an ice-water mixture.

The labelling was organised in sets of six microcosms (determined by the number of microcosms that fit into the labelling chamber). Harvesting of the microcosms began 112 h after the 14C labelling was completed. Shoots were clipped, and roots were collected from both sides of the microcosms separately. Soil was recovered from all six compartments separately.

Fresh subsamples from shoots, roots on each side of the split-root system and soils from the root and hyphal compartments were ashed in a muffle oven (12 h at 600 °C) and the residues dissolved in 2 mL 5.6 M HCl, followed by 5 mL H2O. One millilitre of this solution was mixed with 4 mL Ultima Gold cocktail (PerkinElmer, Groningen, The Netherlands) and 33P activity recorded by liquid scintillation counting (Tri-Carb 2900 TR; PerkinElmer, Groningen, The Netherlands USA). Another 1 mL aliquot was used to determine total phosphorus concentration (San+9 continuous flow analyzer, Skalar Analytical, Breda, The Netherlands).

A second subsample of the root and shoot material was dried (70 °C, 72 h) and re-weighed. These samples were dry-combusted in a sample oxidiser (Model 307, PerkinElmer USA) involving trapping 14CO2 in 10 mL Carbosorb (PerkinElmer) and addition of 10 mL Permafluor (PerkinElmer). 14C activity was determined by liquid scintillation counting, and 14C in soil samples was determined separately for the root and AMF compartments.

AMF colonisation

Root subsamples were cleared with 10% KOH, followed by staining with 5% pen ink–vinegar mixture as described in
Vierheilig et al. (1998). Stained roots were scored for the presence of AMF colonisation using the intersect method outlined in McGonigle et al. (1990). For each sample, at 50 intersections of the root and a gridline the presence or absence of hyphae, vesicles and arbuscules was recorded. From these measurements the total percentage of root length colonised by AMF (which equals the amount of root length occupied by hyphae) was estimated. All the sides of pots that were inoculated with AMF were colonised by AMF at the end of the experiment (Fig. 1c,d and Table S1). In some pots, there was root infection (although at lower levels) on the side that was not inoculated with AMF in the none : AMF treatment (Table S1). In all AMF treatments, infection was > 50%.

Statistical analyses

In order to assess resource transfer from the plant to the AMF, 14C in the hyphal compartment (Bq) was analysed with a linear mixed-effects model as a function of the AMF treatment on the measured side (a fixed factor with two levels: F. mosseae and R. irregularis), the AMF treatment on the opposite side (a fixed factor with three levels: control, F. mosseae and R. irregularis) and a two-way interaction between the two opposite root compartments. We used random effects for pot (a random term with 96 levels) and 14C labelling groups (a random term with 16 levels). A covariate for four consecutive 14C labelling groups – which contained two 33P labelling pairs for each species – was used to account for potential temporal variability in the 14C labelling process that was inherent due to the inability to label all microcosms in a single chamber. A variable for plant species identity (a fixed factor with two levels; control, P. lanceolata and T. pratense) was also used as a main effect because no significant interactions between species and treatments were found. In order to meet the assumptions of homoscedasticity and to standardise for potentially unequal photosynthetic rates among plant species and replicates, 14C was log-transformed.

Total 33P in the plant (Bq; above- and belowground combined) was analysed with a linear mixed-effects model as a function of the AMF treatment on 33P labelled side (a fixed factor with three levels; control, F. mosseae and R. irregularis), the AMF treatment on 33P labelled side (a fixed factor with two levels; F. mosseae and R. irregularis; the control was dropped as only negligible amounts of P were measured without AMF) and a two-way interaction between 33P labelled side and 33P labelled side. A covariate for four consecutive 14C labelling groups and a fixed term for plant species were also used (significant interactions were not found between plant species and the AMF treatments for the resource exchange ratio). We used random effects for the labelling group (a random term with 16 levels). The 14C to 33P ratio was log-transformed in order to meet the assumptions of homoscedasticity and normalised residuals.

We analysed plant performance (total plant biomass in grams) as a function of plant species, AMF treatment (a fixed factor with six levels; none: none, none: R. irregularis, none: F. mosseae, R. irregularis: R. irregularis, F. mosseae: F. mosseae and two AMF) and their interaction. A covariate for four consecutive 14C labelling groups – which contained two 33P labelling pairs for each species – was used to account for potential temporal variability in the 14C labelling process that was inherent due to the inability to label all microcosms in a single chamber. We used random effects for labelling group (a random term with 16 levels). This simpler model was used because plant biomass was independent of which side was labelled with 33P (e.g. in the two AMF treatment R. irregularis: F. mosseae and F. mosseae: R. irregularis are identical treatments). AMF performance (per cent root colonisation) was analysed with the same models described for 33P and 14C in order to allow comparison. However, all possible two-way interactions between plant species and treatments and a three-way interaction among plant species, AMF treatment on one side and AMF treatment on the other side were maintained in the model. Because of interactions between fixed terms, random effects for treatment on the 33P side nested in group (a random term with 48 levels) and treatment on the 33P side nested in group (a random term with 48 levels) were also used in the model. All analyses were performed with the asreml-R package (ASReml 3, VSN International, UK) in the R statistical software (version 3.1.2; http://r-project.org). Summary of ANOVA results for all models are in Tables S1 and S2. All estimates in the results are presented in the scale with which they were analysed (biomass = g, AMF infection = %, 14C = log Bq, 33P = square-root Bq, and 14C/33P = log Bq Bq⁻¹).

RESULTS

The total plant biomass of the two plant species was lowest with no AMF present on the roots, but the two species responded differently to increasing AMF richness and increasing number of inoculated root sides. Plantago lanceolata (the species less responsive to AMF) responded similarly to both AMF species regardless if one root side or both were inoculated (Fig. 2a), but P. lanceolata had significantly higher biomass with F. mosseae (the less cooperative species) than with R. irregularis (the more cooperative species) when both sides of the root were inoculated (Table S1a). Interestingly, R. irregularis had on average 13% (95% CI: 8–18) greater infection with P. lanceolata roots than F. mosseae (Fig. 2c). Trifolium pratense (the species more responsive to AMF) had significantly lower biomass in the none : AMF treatment with
only one root side inoculated with *F. mosseae* than all other treatments with inoculated roots (Fig. 2b, Table S1a). There was statistically no difference between *F. mosseae* (66%, 95% CI: 61–71) and *R. irregularis* (65%, 95% CI: 60–70) infection levels on *T. pratense* (Fig. 2d). The none : none AMF treatments did not contain any AMF (Table S1).

Average allocation of 14C to the hyphal compartment was significantly lower in *R. irregularis* than in *F. mosseae* in treatments where only one species was present (i.e. none : AMF and same AMF; Fig. 3). However, when both species were present on opposite sides of the root (two AMF treatment) the difference between 14C allocation was statistically indistinguishable between the two AMF species (difference between allocation to *F. mosseae* and *R. irregularis* in the two AMF treatment $= 0.3 \log$ Bq, 95% CI: 0.1–0.7; Fig. 3). The plant species responded similarly to the treatments and, on average, *P. lanceolata* contributed significantly more 14C to AMF than *T. pratense* (difference between 14C in the hyphal compartments between *P. lanceolata* and *T. pratense* $= 0.5 \log$ Bq, 95% CI: 0.3–0.7; Table S3a). Small amounts of 14C were measurable in the none : none treatment, but were likely due to root respiration and transmission through the soil by other soil microbes.

In none : AMF and same AMF treatments, average 33P in the plant was significantly higher when provided by *R. irregularis* (e.g. difference between *F. mosseae* : *F. mosseae* and *R. irregularis* : *R. irregularis* treatments $= 18$ square-root Bq, 95% CI: 12–24; Fig. 4). However, in the presence of both AMF species on the roots, 33P in the plant was higher from *F. mosseae* (difference between 33P contribution from *F. mosseae* and *R. irregularis* in the two AMF treatment $= 11$ square-root Bq, 95% CI: 3–20; Fig. 4), and this result was consistent for both plant species (Table S3b). Furthermore, *F. mosseae* provided significantly more 33P to the plant in the presence of *R. irregularis* than in its absence (difference between 33P from *F. mosseae* : *F. mosseae* combination in the same AMF and *F. mosseae* : *R. irregularis* combination in the two AMF treatment $= 26$ square-root Bq, 95% CI: 20–32). Plant 33P was not significantly different from zero in the none : none treatments (5 square root Bq, 95% CI: −1–11). The results of plant 33P were similar to that of total and relative plant phosphorus (Fig. S1,S2).

The cost of phosphorus in terms of carbon was significantly higher from *F. mosseae* than from *R. irregularis* when only one AMF species was present on the roots. The cost of phosphorus in terms of carbon from *F. mosseae* and *R. irregularis*
in the same AMF treatments was 350% higher (95% CI: 170–640; Fig. 5). However, the cost from the two AMF species became statistically indistinguishable when both AMF species were present (difference between cost of phosphorus from \textit{F. mosseae} and \textit{R. irregularis} in the two AMF treatment = 0.2 \log 14C per 33P, 95% CI: −0.4–1.7; Fig. 5). Although the cost of phosphorus from \textit{R. irregularis} increased slightly – but not significantly – in the presence of \textit{F. mosseae} (difference between cost of phosphorus from \textit{R. irregularis} in the same AMF treatment and \textit{R. irregularis} in the two AMF treatment = 0.3 \log 14C per 33P, 95% CI: −0.2–0.9; Fig. 5), the cost from \textit{F. mosseae} significantly decreased in the presence of \textit{R. irregularis} (difference between cost of phosphorus from \textit{F. mosseae} in the same AMF treatment and \textit{F. mosseae} in the two AMF treatment = −1.2 \log 14C per 33P, 95% CI: −1.6 to −0.8; Fig. 5). The plant species responded similarly to the treatments and, on average, the cost of phosphorus was higher for \textit{P. lanceolata} than \textit{T. pratense} (difference between 14C per 33P between \textit{P. lanceolata} and \textit{T. pratense} = 0.9, 95% CI: 0.6–1.3; Table S3c) due to the greater 14C allocation to the hyphal compartment by \textit{P. lanceolata} (Table S3a).

DISCUSSION

In this study, we assessed plant carbon allocation and phosphorus acquisition in relation to two AMF species using microcosms with a split-root system and a partitioned rhizosphere in order to understand the mechanisms maintaining the plant–AMF symbiosis. We showed that the two AMF species provided phosphorus at significantly different carbon
prices when they grew on the plant in the absence of another fungal species. Interestingly, however, the less cooperative fungus (i.e. the fungus that took more C per unit P delivered to the host) became more cooperative when another fungus was present, and the presence of the cooperative fungus (i.e. *R. irregularis*) decreased the overall carbon cost of phosphorus from this relatively less cooperative fungus (i.e. *F. mosseae*). These results indicate that the presence of multiple AMF (e.g. AMF diversity) can improve resource trade among AMF partners and, in the case of the more responsive plant species (i.e. *T. pratense*), increase biomass. Thus, AMF diversity may support the maintenance of the plant–AMF mutualism by altering markets prices for resources, which may explain why plant roots in the field are usually colonised by a high diversity of AMF.

In the absence of alternative fungal options, *F. mosseae* – the less cooperative AMF – was able to obtain more ¹⁴C in exchange for less ³²P than the more cooperative AMF, *R. irregularis*. Interestingly, this increased ¹⁴C consumption with reduced ³²P exchange never decreased the host’s biomass below that of the none : none treatments (i.e. the symbiotic association remained beneficial and did not reduce fitness; see Reynolds et al. 2005 for opposite example). Furthermore, it only significantly reduced biomass relative to the two AMF treatments for the more fungal-responsive plant species (*T. pratense*; Fig. 2). Therefore, the plants either had an excess of resources that they were able to allocate to AMF due to improved fitness caused by the presence of AMF or were effective at implementing sanctions that inhibited the AMF from over-consuming ¹⁴C (Kiers & Van Der Heijden 2006; Jones et al. 2015).

A surprising result is the improved cooperativeness of *F. mosseae* in response to the presence of *R. irregularis*, as demonstrated by the increased ³²P in the plant. This result supports the market concept of supply and demand altering resource value (Noë & Hammerstein 1994). The addition of a second AMF species likely increased the overall supply of P and drove P prices down. Therefore, the cost in C per unit of P was reduced due to a more competitive market (Noë & Hammerstein 1994; de Mazancourt & Schwartz 2010). However, the addition of a second AMF species could also have altered sink strength for carbon and phosphorus and with that the resource exchange ratio. Another potential mechanism promoting cooperation is partner fidelity feedback whereby the presence of the cooperative fungus improves the vigour of the plant giving it a luxury of carbon and those benefits in turn lead to more resources to the fungi (Foster & Wenseleers 2006; Kiers & Van Der Heijden 2006). In support of this concept, both fungi and plants had slightly improved performance in the two AMF treatment (i.e. more AMF infection and more plant biomass; Fig. 2). Interestingly, the improved performance was stronger for the more AMF-responsive plant (*T. pratense*) and the less cooperative AMF species (*F. mosseae*). The response of the plant is not surprising as it should be expected that more AMF species have a greater benefit to a highly AMF responsive plant, but greater infection by the *F. mosseae* may also be due to the plant rewarding the improved cooperation of *F. mosseae*, or allowing greater infection due to its improved cooperation.

There are of course limitations to using a simplified experimental system. The partitioning of the rhizosphere may have reduced root–hyphae and hyphae–hyphae competition, which would alter spatial interactions and resource access (Verbruggen et al. 2012). This reduced competition may have altered hyphal growth through increased proliferation or extension. Furthermore, there is the possibility that compartments became infected with other AMF species, but this issue is a problem in many controlled AMF experiments because of contamination from endophytes and spores. However, colonisation of root tips by invading AMF would need to compete with pre-established AMF hyphae and infection (Wagg et al. 2011). Although this experiment represents a simplified plant–AMF system in a homogenous environment, our results still provide important progress towards
understanding the effect of fungal diversity on market prices and resource exchange.

In conclusion, our novel experimental manipulation of both resource exchange and the rhizosphere highlights the importance of multiple competing AMF in altering market prices which promotes cooperation in the plant–AMF mutualism. AMF options reduced the carbon cost per unit of phosphorus by mainly increasing the amount of phosphorus the AMF partner provided and not by reducing the amount of carbon provided by the plant. These results indicate the importance of AMF options for the persistence of the plant–AMF mutualism and allude to potential underlying mechanisms for the role of AMF diversity in promoting biodiversity effects.

ACKNOWLEDGEMENTS

We would like to thank Cam Wagg for his contribution of fungal isolates and two anonymous reviewers for their thorough revisions. This research was supported by a grant to Bernhard Schmid, Andres Wiemken and Marcel van Heijden from the Syngenta Fellowship Program of the Zurich-Basel Plant Science Center.

AUTHORSHIP

MOB and AA are co-first authors. MOB analysed the data, wrote the final version of the manuscript and led the revisions from referees. AA conceived and carried out the experiment and wrote a version of the manuscript for her PhD thesis. MH contributed to the experimental design, provided mycorrhizal inoculum and revisions. AW contributed to experimental design and isotope analysis. BS contributed to the experimental design, analysis, writing and revisions. BS, AW and MH wrote the grant that funded the project. PAN conceived the experiment and contributed in the experimental implementation, analysis, writing and revisions.

REFERENCES

Coutts, M.P. & Philipson, J.J. (1976). The influence of mineral nutrition by mainly increasing the amount of phosphorus the AMF partner provided and not by reducing the amount of carbon provided by the plant. These results indicate the importance of AMF options for the persistence of the plant–AMF mutualism and allude to potential underlying mechanisms for the role of AMF diversity in promoting biodiversity effects.

ACKNOWLEDGEMENTS

We would like to thank Cam Wagg for his contribution of fungal isolates and two anonymous reviewers for their thorough revisions. This research was supported by a grant to Bernhard Schmid, Andres Wiemken and Marcel van Heijden from the Syngenta Fellowship Program of the Zurich-Basel Plant Science Center.

AUTHORSHIP

MOB and AA are co-first authors. MOB analysed the data, wrote the final version of the manuscript and led the revisions from referees. AA conceived and carried out the experiment and wrote a version of the manuscript for her PhD thesis. MH contributed to the experimental design, provided mycorrhizal inoculum and revisions. AW contributed to experimental design and isotope analysis. BS contributed to the experimental design, analysis, writing and revisions. BS, AW and MH wrote the grant that funded the project. PAN conceived the experiment and contributed in the experimental implementation, analysis, writing and revisions.

REFERENCES

Coutts, M.P. & Philipson, J.J. (1976). The influence of mineral nutrition by mainly increasing the amount of phosphorus the AMF partner provided and not by reducing the amount of carbon provided by the plant. These results indicate the importance of AMF options for the persistence of the plant–AMF mutualism and allude to potential underlying mechanisms for the role of AMF diversity in promoting biodiversity effects.

ACKNOWLEDGEMENTS

We would like to thank Cam Wagg for his contribution of fungal isolates and two anonymous reviewers for their thorough revisions. This research was supported by a grant to Bernhard Schmid, Andres Wiemken and Marcel van Heijden from the Syngenta Fellowship Program of the Zurich-Basel Plant Science Center.

AUTHORSHIP

MOB and AA are co-first authors. MOB analysed the data, wrote the final version of the manuscript and led the revisions from referees. AA conceived and carried out the experiment and wrote a version of the manuscript for her PhD thesis. MH contributed to the experimental design, provided mycorrhizal inoculum and revisions. AW contributed to experimental design and isotope analysis. BS contributed to the experimental design, analysis, writing and revisions. BS, AW and MH wrote the grant that funded the project. PAN conceived the experiment and contributed in the experimental implementation, analysis, writing and revisions.

REFERENCES

Coutts, M.P. & Philipson, J.J. (1976). The influence of mineral nutrition by mainly increasing the amount of phosphorus the AMF partner provided and not by reducing the amount of carbon provided by the plant. These results indicate the importance of AMF options for the persistence of the plant–AMF mutualism and allude to potential underlying mechanisms for the role of AMF diversity in promoting biodiversity effects.

ACKNOWLEDGEMENTS

We would like to thank Cam Wagg for his contribution of fungal isolates and two anonymous reviewers for their thorough revisions. This research was supported by a grant to Bernhard Schmid, Andres Wiemken and Marcel van Heijden from the Syngenta Fellowship Program of the Zurich-Basel Plant Science Center.

AUTHORSHIP

MOB and AA are co-first authors. MOB analysed the data, wrote the final version of the manuscript and led the revisions from referees. AA conceived and carried out the experiment and wrote a version of the manuscript for her PhD thesis. MH contributed to the experimental design, provided mycorrhizal inoculum and revisions. AW contributed to experimental design and isotope analysis. BS contributed to the experimental design, analysis, writing and revisions. BS, AW and MH wrote the grant that funded the project. PAN conceived the experiment and contributed in the experimental implementation, analysis, writing and revisions.

REFERENCES

Coutts, M.P. & Philipson, J.J. (1976). The influence of mineral nutrition by mainly increasing the amount of phosphorus the AMF partner provided and not by reducing the amount of carbon provided by the plant. These results indicate the importance of AMF options for the persistence of the plant–AMF mutualism and allude to potential underlying mechanisms for the role of AMF diversity in promoting biodiversity effects.

SUPPORTING INFORMATION

Additional Supporting Information may be downloaded via the online version of this article at Wiley Online Library (www.ecologyletters.com).

Editor, Hafiz Maherali
Manuscript received 2 February 2016
First decision made 25 February 2016
Manuscript accepted 8 March 2016